Original Article
Pressure-controlled versus volume-controlled ventilation during one-lung ventilation for video-assisted thoracoscopic lobectomy
Abstract
Background: It is controversial as to which ventilation mode is better during one-lung ventilation (OLV). This study was designed to figure out whether there was any difference between volume controlled ventilation (VCV) and pressure controlled ventilation (PCV) on oxygenation and postoperative complications under the condition of protective ventilation (PV).
Methods: Sixty-five patients undergoing video-assisted thoracoscopic lobectomy were randomized into two groups. Patients in group V received VCV mode during OLV while patients in group P received PCV. The tidal volume (VT) in both groups was 6 mL per predicted body weight (PBW). Positive end-expiratory pressure (PEEP) was set at the level of 5 cmH2O in both groups. Arterial gas analysis were performed preoperatively with room air (T0), at 15 mins (T1) and 1 h (T2) after OLV, at the end of OLV (T3), 30 min after PACU admission (T4), 24 h after surgery (post-operative day 1, POD1) and 48 h after surgery (post-operative day 2, POD2). Peak inspiratory airway pressure (Ppeak) and plateau airway pressure (Pplat) were recorded at T1, T2 and T3. The perioperative complications were also recorded.
Result: Sixty-four patients completed this study. Ppeak in group V was significantly higher than that in group P (T1 22.3±2.9 vs. 18.7±2.1 cmH2O; T2 22.2±2.8 vs. 18.7±2.6 cmH2O). There were no differences with Pplat and intraoperative oxygenation index (T1 203.3±109.7 vs. 198.1±93.4; T2 216.8±79.1 vs. 232.1±101.4). The postoperative oxygenation index (T4 525.0±160.9 vs. 520.7±127.1, post-operative day 1 (POD1) 452.1±161.3 vs. 446.1±109.1; post-operative day 2 (POD2) 403.8±93.4 vs. 396.7±92.8) and postoperative complications were also comparable between these two groups.
Conclusions: When they were utilized during OLV, PCV and VCV had the same performance on the intraoperative oxygenation and postoperative complications under the condition of PV.
Methods: Sixty-five patients undergoing video-assisted thoracoscopic lobectomy were randomized into two groups. Patients in group V received VCV mode during OLV while patients in group P received PCV. The tidal volume (VT) in both groups was 6 mL per predicted body weight (PBW). Positive end-expiratory pressure (PEEP) was set at the level of 5 cmH2O in both groups. Arterial gas analysis were performed preoperatively with room air (T0), at 15 mins (T1) and 1 h (T2) after OLV, at the end of OLV (T3), 30 min after PACU admission (T4), 24 h after surgery (post-operative day 1, POD1) and 48 h after surgery (post-operative day 2, POD2). Peak inspiratory airway pressure (Ppeak) and plateau airway pressure (Pplat) were recorded at T1, T2 and T3. The perioperative complications were also recorded.
Result: Sixty-four patients completed this study. Ppeak in group V was significantly higher than that in group P (T1 22.3±2.9 vs. 18.7±2.1 cmH2O; T2 22.2±2.8 vs. 18.7±2.6 cmH2O). There were no differences with Pplat and intraoperative oxygenation index (T1 203.3±109.7 vs. 198.1±93.4; T2 216.8±79.1 vs. 232.1±101.4). The postoperative oxygenation index (T4 525.0±160.9 vs. 520.7±127.1, post-operative day 1 (POD1) 452.1±161.3 vs. 446.1±109.1; post-operative day 2 (POD2) 403.8±93.4 vs. 396.7±92.8) and postoperative complications were also comparable between these two groups.
Conclusions: When they were utilized during OLV, PCV and VCV had the same performance on the intraoperative oxygenation and postoperative complications under the condition of PV.