Perspective


A novel hypothesis: up-regulation of HO-1 by activation of PPARγ inhibits HMGB1-RAGE signaling pathway and ameliorates the development of ALI/ARDS

Guizuo Wang, Dong Han, Yonghong Zhang, Xinming Xie, Yuanyuan Wu, Shaojun Li, Manxiang Li

Abstract

Suppression of inflammation in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) by activation of peroxisome proliferator-activated receptor (PPAR)-γ has been well demonstrated in animal model studies. However, the molecular mechanisms underlying this effect remain largely unknown. The induction of heme oxygenase-1 (HO-1) exerts antioxidant, anti-apoptotic, and immunomodulatory functions in various situations. Recent studies have indicated that activation of PPARγ induces expression of HO-1, suggesting that HO-1 is a downstream target of PPARγ. Meanwhile, study has shown that activation of PPARγ ameliorates inflammatory response of cells by inhibiting high mobility group box 1 (HMGB1) release. In pulmonary system, binding of HMGB1 to its receptor for advanced glycation end-products (RAGE) triggers the production of pro-inflammatory cytokines, chemokines, adhesion molecules and reactive oxygen species, promoting the development of ALI/ARDS. Based on the recent findings that induction of HO-1 protects tissues and cells from extracellular stress by reducing HMGB1 production, we propose the hypothesis that HO-1 may mediate the protective effects of PPARγ on inhibition of HMGB1-RAGE signaling pathway to attenuate the development of ALI/ARDS.

Download Citation