Original Article
Sevoflurane did not show better protective effect on endothelial glycocalyx layer compared to propofol during lung resection surgery with one lung ventilation
Abstract
Background: The endothelial glycocalyx layer (EGL) coats the alveolar capillary endothelium and plays important roles in pulmonary vascular protection, modulation, and hemostasis. Ischemia-reperfusion, which occurs during lung resection surgery with one lung ventilation (OLV), can damage the EGL. Sevoflurane is known for its protective effect against ischemia-reperfusion injury. Therefore, we hypothesized that lung resection surgery produces EGL damage and sevoflurane protects the EGL better than the intravenous anesthetic propofol.
Methods: Seventy-eight patients undergoing pulmonary resection were randomly allocated into the sevoflurane (n=38) and propofol (n=40) groups. All patients received OLV and protective ventilation under sevoflurane- or propofol-based anesthesia. The concentrations of EGL injury markers (heparan sulfate and human syndecan-1) and an inflammatory marker (vascular cell adhesion molecule-1) were measured from blood samples drawn at five time points (after induction, 60 min after OLV, 120 min after OLV, end of OLV, and end of surgery).
Results: OLV increased the concentrations of EGL injury markers; heparan sulfate concentrations increased from 120 minutes after OLV (120 minutes after OLV: sevoflurane, 13.3±6.8 ng/mL, P<0.05; propofol, 14.8±6.9 ng/mL, P<0.05). Human syndecan-1 concentrations also increased from 120 minutes after OLV (120 minutes after OLV: sevoflurane, 20.4±8.9 ng/mL, P<0.05; propofol, 20.5±11.8 ng/mL, P>0.05). However, no difference in EGL injury markers was observed between the sevoflurane and propofol groups at any time point. Vascular cell adhesion molecule-1 concentrations did not show any temporal changes in either group.
Conclusions: Lung resection surgery with OLV produced EGL damage without any increase in inflammation. Although shedding of heparan sulfate induced by EGL injury during lung resection surgery with OLV, was less than propofol, it was not statistically significant.
Methods: Seventy-eight patients undergoing pulmonary resection were randomly allocated into the sevoflurane (n=38) and propofol (n=40) groups. All patients received OLV and protective ventilation under sevoflurane- or propofol-based anesthesia. The concentrations of EGL injury markers (heparan sulfate and human syndecan-1) and an inflammatory marker (vascular cell adhesion molecule-1) were measured from blood samples drawn at five time points (after induction, 60 min after OLV, 120 min after OLV, end of OLV, and end of surgery).
Results: OLV increased the concentrations of EGL injury markers; heparan sulfate concentrations increased from 120 minutes after OLV (120 minutes after OLV: sevoflurane, 13.3±6.8 ng/mL, P<0.05; propofol, 14.8±6.9 ng/mL, P<0.05). Human syndecan-1 concentrations also increased from 120 minutes after OLV (120 minutes after OLV: sevoflurane, 20.4±8.9 ng/mL, P<0.05; propofol, 20.5±11.8 ng/mL, P>0.05). However, no difference in EGL injury markers was observed between the sevoflurane and propofol groups at any time point. Vascular cell adhesion molecule-1 concentrations did not show any temporal changes in either group.
Conclusions: Lung resection surgery with OLV produced EGL damage without any increase in inflammation. Although shedding of heparan sulfate induced by EGL injury during lung resection surgery with OLV, was less than propofol, it was not statistically significant.