Original Article
Diagnostic value of ProGRP for small cell lung cancer in different stages
Abstract
Background: To investigate the roles of gastrin-releasing peptide (ProGRP) in the diagnosis of small cell lung cancer (SCLC).
Methods: We retrospectively analyzed data from 11,206 patients with clinical suspicion of lung cancer from January 1, 2015 to May 31, 2018. ProGRP and neuron-specific enolase (NSE) were detected in peripheral blood, and receiver operating characteristic curve (ROC) was used for analysis.
Results: ROC indicated that the cutoff values of ProGRP and NSE were 66 ng/L and 18 µg/L respectively, and the diagnosis efficacy of ProGRP was greater than that of NSE (sensitivity: 86.5% vs. 78.8%; specificity: 96.5% vs. 86.3%, respectively) in the diagnosis of SCLC. Moreover, the median level of ProGRP in SCLC increased with the accompanying stages (P<0.001). Further analysis showed that diagnostic efficacy can be improved by using different cutoff values in different stages, but not stage I and II. The cut-off values of ProGRP in the diagnosis of SCLC in stage I–II, III and IV were 56, 71 and 99 ng/L respectively. In addition, the sensitivity (96.6% vs. 95.8% and 98.3% vs. 94.8%) and concordance rate (χ2 =1,526.9 and 988.7, both P<0.001) of detecting SCLC was improved by using different cutoff values compared with the only criteria of ProGRP being ≥66 ng/L in stage III and IV, but not stage I–II. Additionally, in stage III and IV, the concordance rates of ProGRP ≥71 ng/L and ProGRP ≥99 ng/L were also higher than ProGRP ≥300 ng/L (both P<0.001), which was conventionally indicated for SCLC.
Conclusions: ProGRP has significantly higher sensitivity and specificity than NSE in the diagnosis of SCLC. Furthermore, special thresholds for every stage may be more reasonable for the diagnosis of SCLC.
Methods: We retrospectively analyzed data from 11,206 patients with clinical suspicion of lung cancer from January 1, 2015 to May 31, 2018. ProGRP and neuron-specific enolase (NSE) were detected in peripheral blood, and receiver operating characteristic curve (ROC) was used for analysis.
Results: ROC indicated that the cutoff values of ProGRP and NSE were 66 ng/L and 18 µg/L respectively, and the diagnosis efficacy of ProGRP was greater than that of NSE (sensitivity: 86.5% vs. 78.8%; specificity: 96.5% vs. 86.3%, respectively) in the diagnosis of SCLC. Moreover, the median level of ProGRP in SCLC increased with the accompanying stages (P<0.001). Further analysis showed that diagnostic efficacy can be improved by using different cutoff values in different stages, but not stage I and II. The cut-off values of ProGRP in the diagnosis of SCLC in stage I–II, III and IV were 56, 71 and 99 ng/L respectively. In addition, the sensitivity (96.6% vs. 95.8% and 98.3% vs. 94.8%) and concordance rate (χ2 =1,526.9 and 988.7, both P<0.001) of detecting SCLC was improved by using different cutoff values compared with the only criteria of ProGRP being ≥66 ng/L in stage III and IV, but not stage I–II. Additionally, in stage III and IV, the concordance rates of ProGRP ≥71 ng/L and ProGRP ≥99 ng/L were also higher than ProGRP ≥300 ng/L (both P<0.001), which was conventionally indicated for SCLC.
Conclusions: ProGRP has significantly higher sensitivity and specificity than NSE in the diagnosis of SCLC. Furthermore, special thresholds for every stage may be more reasonable for the diagnosis of SCLC.