Original Article
Incidence and risk factors of chronic thromboembolic pulmonary hypertension in patients after acute pulmonary embolism
Abstract
Background: Early identification and treatment of chronic thromboembolic pulmonary hypertension (CTEPH) are critical to prevent disease progression. We determined the incidence and risk factors for CTEPH in patients with a first episode of acute pulmonary embolism (PE).
Methods: In this study, consecutive patients with first-episode acute PE were followed for ≤5 years. Pulmonary hypertension (PH) was screened for by echocardiography. Suspected cases were evaluated by right heart catheterization (RHC) and pulmonary angiography (PA). If invasive procedures were not permitted, PH was diagnosed by systolic pulmonary artery pressure (SPAP) >50 mmHg. Diagnosis of CTEPH was confirmed by PA, ventilation/perfusion (V/Q) lung scan, or computed tomography (CT) PA (CTPA).
Results: Overall, 614 patients with acute PE were included (median follow-up, 3.3 years). Ten patients were diagnosed with CTEPH: cumulative incidence 0.8% [95% confidence interval (CI), 0.0-1.6%] at 1 year, 1.3% (95% CI, 0.3-2.3%) at 2 years, and 1.7% (95% CI, 0.7-2.7%) at 3 years. No cases of CTEPH developed after 3 years. History of lower-limb varicose veins [hazard ratio (HR), 4.3; 95% CI, 1.2-15.4; P=0.024], SPAP >50 mmHg at initial PE episode (HR, 23.5; 95% CI, 2.7-207.6; P=0.005), intermediate-risk PE (HR, 1.2; 95% CI, 1.0-1.4; P=0.030), and CT obstruction index over 30% at 3 months after acute PE (HR, 42.5; 95% CI, 4.4-409.8; P=0.001) were associated with increased risk of CTEPH.
Conclusions: CTEPH was not rare after acute PE in this Chinese population, especially within 3 years of diagnosis. Lower-limb varicose veins, intermediate-risk PE with elevated SPAP in the acute phase, and residual emboli during follow-up might increase the risk of CTEPH.
Methods: In this study, consecutive patients with first-episode acute PE were followed for ≤5 years. Pulmonary hypertension (PH) was screened for by echocardiography. Suspected cases were evaluated by right heart catheterization (RHC) and pulmonary angiography (PA). If invasive procedures were not permitted, PH was diagnosed by systolic pulmonary artery pressure (SPAP) >50 mmHg. Diagnosis of CTEPH was confirmed by PA, ventilation/perfusion (V/Q) lung scan, or computed tomography (CT) PA (CTPA).
Results: Overall, 614 patients with acute PE were included (median follow-up, 3.3 years). Ten patients were diagnosed with CTEPH: cumulative incidence 0.8% [95% confidence interval (CI), 0.0-1.6%] at 1 year, 1.3% (95% CI, 0.3-2.3%) at 2 years, and 1.7% (95% CI, 0.7-2.7%) at 3 years. No cases of CTEPH developed after 3 years. History of lower-limb varicose veins [hazard ratio (HR), 4.3; 95% CI, 1.2-15.4; P=0.024], SPAP >50 mmHg at initial PE episode (HR, 23.5; 95% CI, 2.7-207.6; P=0.005), intermediate-risk PE (HR, 1.2; 95% CI, 1.0-1.4; P=0.030), and CT obstruction index over 30% at 3 months after acute PE (HR, 42.5; 95% CI, 4.4-409.8; P=0.001) were associated with increased risk of CTEPH.
Conclusions: CTEPH was not rare after acute PE in this Chinese population, especially within 3 years of diagnosis. Lower-limb varicose veins, intermediate-risk PE with elevated SPAP in the acute phase, and residual emboli during follow-up might increase the risk of CTEPH.