Original Article
White light, autofluorescence and narrow-band imaging bronchoscopy for diagnosing airway pre-cancerous and early cancer lesions: a systematic review and meta-analysis
Abstract
Background: We aimed to summarize the diagnostic accuracy of white light bronchoscopy (WLB) and advanced techniques for airway pre-cancerous lesions and early cancer, such as autofluorescence bronchoscopy (AFB), AFB combined with WLB (AFB + WLB) and narrow-band imaging (NBI) bronchoscopy.
Methods: We searched for eligible studies in seven electronic databases from their date of inception to Mar 20, 2015. In eligible studies, detected lesions should be confirmed by histopathology. We extracted and calculated the 2×2 data based on the pathological criteria of lung tumor, including high-grade lesions from moderate dysplasia (MOD) to invasive carcinoma (INV). Random-effect model was used to pool sensitivity, specificity, diagnostic odds ratio (DOR) and the area under the receiver-operating characteristic curve (AUC).
Results: In 53 eligible studies (39 WLB, 39 AFB, 17 AFB + WLB, 6 NBI), diagnostic performance for high-grade lesions was analyzed based on twelve studies (10 WLB, 7 AFB, 7 AFB + WLB, 1 NBI), involving with totally 2,880 patients and 8,830 biopsy specimens. The sensitivity, specificity, DOR and AUC of WLB were 51% (95% CI, 34–68%), 86% (95% CI, 73–84%), 6 (95% CI, 3-13) and 77% (95% CI, 73–81%). Those of AFB and AFB + WLB were 93% (95% CI, 77–98%) and 86% (95% CI, 75–97%), 52% (95% CI, 37–67%) and 71% (95% CI, 56–87%), 15 (95% CI, 4–57) and 16 (95% CI, 6–41), and 76% (95% CI, 72–79%) and 82% (95% CI, 78–85%), respectively. NBI presented 100% sensitivity and 43% specificity.
Conclusions: With higher sensitivity, advanced bronchoscopy could be valuable to avoid missed diagnosis. Combining strategy of AFB and WLB may contribute preferable diagnosis rather than their alone use for high-grade lesions. Studies of NBI warrants further investigation for precancerous lesions.
Methods: We searched for eligible studies in seven electronic databases from their date of inception to Mar 20, 2015. In eligible studies, detected lesions should be confirmed by histopathology. We extracted and calculated the 2×2 data based on the pathological criteria of lung tumor, including high-grade lesions from moderate dysplasia (MOD) to invasive carcinoma (INV). Random-effect model was used to pool sensitivity, specificity, diagnostic odds ratio (DOR) and the area under the receiver-operating characteristic curve (AUC).
Results: In 53 eligible studies (39 WLB, 39 AFB, 17 AFB + WLB, 6 NBI), diagnostic performance for high-grade lesions was analyzed based on twelve studies (10 WLB, 7 AFB, 7 AFB + WLB, 1 NBI), involving with totally 2,880 patients and 8,830 biopsy specimens. The sensitivity, specificity, DOR and AUC of WLB were 51% (95% CI, 34–68%), 86% (95% CI, 73–84%), 6 (95% CI, 3-13) and 77% (95% CI, 73–81%). Those of AFB and AFB + WLB were 93% (95% CI, 77–98%) and 86% (95% CI, 75–97%), 52% (95% CI, 37–67%) and 71% (95% CI, 56–87%), 15 (95% CI, 4–57) and 16 (95% CI, 6–41), and 76% (95% CI, 72–79%) and 82% (95% CI, 78–85%), respectively. NBI presented 100% sensitivity and 43% specificity.
Conclusions: With higher sensitivity, advanced bronchoscopy could be valuable to avoid missed diagnosis. Combining strategy of AFB and WLB may contribute preferable diagnosis rather than their alone use for high-grade lesions. Studies of NBI warrants further investigation for precancerous lesions.