Original Article


Dynamic and quantitative evaluation of degenerative mitral valve disease: a dedicated framework based on cardiac magnetic resonance imaging

Francesco Sturla, Francesco Onorati, Giovanni Puppini, Omar A. Pappalardo, Matteo Selmi, Emiliano Votta, Giuseppe Faggian, Alberto Redaelli

Abstract

Background: Accurate quantification of mitral valve (MV) morphology and dynamic behavior over the cardiac cycle is crucial to understand the mechanisms of degenerative MV dysfunction and to guide the surgical intervention. Cardiac magnetic resonance (CMR) imaging has progressively been adopted to evaluate MV pathophysiology, although a dedicated framework is required to perform a quantitative assessment of the functional MV anatomy.
Methods: We investigated MV dynamic behavior in subjects with normal MV anatomy (n=10) and patients referred to surgery due to degenerative MV prolapse, classified as fibro-elastic deficiency (FED, n=9) and Barlow’s disease (BD, n=10). A CMR-dedicated framework was adopted to evaluate prolapse height and volume and quantitatively assess valvular morphology and papillary muscles (PAPs) function over the cardiac cycle. Multiple comparison was used to investigate the hallmarks associated to MV degenerative prolapse and evaluate the feasibility of anatomical and functional distinction between FED and BD phenotypes.
Results: On average, annular dimensions were significantly (P<0.05) larger in BD than in FED and normal subjects while no significant differences were noticed between FED and normal. MV eccentricity progressively decreased passing from normal to FED and BD, with the latter exhibiting a rounder annulus shape. Over the cardiac cycle, we noticed significant differences for BD during systole with an abnormal annular enlargement between mid and late systole (LS) (P<0.001 vs. normal); the PAPs dynamics remained comparable in the three groups. Prolapse height and volume highlighted significant differences among normal, FED and BD valves.
Conclusions: Our CMR-dedicated framework allows for the quantitative and dynamic evaluation of MV apparatus, with quantifiable annular alterations representing the primary hallmark of severe MV degeneration. This may aid surgeons in the evaluation of the severity of MV dysfunction and the selection of the appropriate MV treatment.

Download Citation