Original Article
Association between NADPH oxidase (NOX) and lung cancer: a systematic review and meta-analysis
Abstract
Background: Lung cancer is a leading cause of death worldwide. Considerable studies have reported that NADPH oxidase (NOX) expression or activity may play an important role in the tumorigenesis of lung cancer. However, the results are inconsistent. Thus, a systematic review and meta-analysis were conducted in this study.
Methods: A systematic search of electronic databases was performed. Statistical analysis was performed using the Comprehensive Meta-Analysis software (Version 3). The pooled Hedges’s g with 95% confidence intervals (95% CIs) or rate ratio with 95% CIs was adopted to assess the effect size. Fixed or random effect model was separately used based on the heterogeneity between the studies.
Results: A total of ten eligible studies were included in the current systematic review and overall meta-analysis showed that NOX/DUOX activity and mRNA were significantly in favor of lung cancer (Hedges’s g =1.216, P=0.034). Suppression of NOX function by pharmacologic inhibitor or expression by siRNA resulted in significant inhibition of lung cancer cell invasion and migration in in vitro experiments (Hedges’s g =2.422, P<0.001) and lung cancer formation in vivo studies (rate ratio =0.366, P=0.002).
Conclusions: Findings of this systematic review indicate that NOX activity and expression is associated with tumorigenesis of lung cancer and inhibition of NOX function or mRNA expression significantly blocks lung cancer formation and invasion. Suppressing NOX up-regulation or interfering NOX function in tumor microenvironment may be one important approach to prevent oxidative-stress-related carcinogenesis in the lung.
Methods: A systematic search of electronic databases was performed. Statistical analysis was performed using the Comprehensive Meta-Analysis software (Version 3). The pooled Hedges’s g with 95% confidence intervals (95% CIs) or rate ratio with 95% CIs was adopted to assess the effect size. Fixed or random effect model was separately used based on the heterogeneity between the studies.
Results: A total of ten eligible studies were included in the current systematic review and overall meta-analysis showed that NOX/DUOX activity and mRNA were significantly in favor of lung cancer (Hedges’s g =1.216, P=0.034). Suppression of NOX function by pharmacologic inhibitor or expression by siRNA resulted in significant inhibition of lung cancer cell invasion and migration in in vitro experiments (Hedges’s g =2.422, P<0.001) and lung cancer formation in vivo studies (rate ratio =0.366, P=0.002).
Conclusions: Findings of this systematic review indicate that NOX activity and expression is associated with tumorigenesis of lung cancer and inhibition of NOX function or mRNA expression significantly blocks lung cancer formation and invasion. Suppressing NOX up-regulation or interfering NOX function in tumor microenvironment may be one important approach to prevent oxidative-stress-related carcinogenesis in the lung.